Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 28 results ...

Adeyeye, K and Emmitt, S (2017) Multi-scale, integrated strategies for urban flood resilience. International Journal of Disaster Resilience in the Built Environment, 8(05), 494-520.

Ahmed, I (2016) Housing and resilience: case studies from the Cook Islands. International Journal of Disaster Resilience in the Built Environment, 7(05), 489-500.

Ali, R A, Mannakkara, S and Wilkinson, S (2020) Factors affecting successful transition between post-disaster recovery phases: a case study of 2010 floods in Sindh, Pakistan. International Journal of Disaster Resilience in the Built Environment, 11(05), 597–614.

Baroudi, B and Rapp, R (2016) Disaster restoration project management: leadership education and methods. International Journal of Disaster Resilience in the Built Environment, 7(05), 434-43.

Choi, C Y and Honda, R (2019) Motive and conflict in the disaster recovery process. International Journal of Disaster Resilience in the Built Environment, 10(05), 408–19.

Durage, S W, Wirasinghe, S C and Ruwanpura, J Y (2017) Tornado mitigation network analysis and simulation. International Journal of Disaster Resilience in the Built Environment, 8(05), 478-93.

Feofilovs, M, Romagnoli, F, Gotangco, C K, Josol, J C, Jardeleza, J M P, Litam, J E, Campos, J I and Abenojar, K (2020) Assessing resilience against floods with a system dynamics approach: a comparative study of two models. International Journal of Disaster Resilience in the Built Environment, 11(05), 615–29.

Firouzi Jahantigh, F and Jannat, F (2019) Analyzing the sequence and interrelations of Natech disasters in Urban areas using interpretive structural modelling (ISM). International Journal of Disaster Resilience in the Built Environment, 10(05), 392–407.

Ganguly, K K, Padhy, R K and Rai, S S (2017) Managing the humanitarian supply chain: a fuzzy logic approach. International Journal of Disaster Resilience in the Built Environment, 8(05), 521-36.

Harisuthan, S, Hasalanka, H, Kularatne, D and Siriwardana, C (2020) Applicability of the PTVA-4 model to evaluate the structural vulnerability of hospitals in Sri Lanka against tsunami. International Journal of Disaster Resilience in the Built Environment, 11(05), 581–96.

Huong, H T L and Dzung, L H (2020) Criteria for flood warning levels in Vietnam. International Journal of Disaster Resilience in the Built Environment, 11(05), 645–58.

Ismail, F Z, Halog, A and Smith, C (2017) How sustainable is disaster resilience? An overview of sustainable construction approach in post-disaster housing reconstruction. International Journal of Disaster Resilience in the Built Environment, 8(05), 555-72.

Kashem, S B (2019) Housing practices and livelihood challenges in the hazard-prone contested spaces of rural Bangladesh. International Journal of Disaster Resilience in the Built Environment, 10(05), 420–34.

Kimura, N, Tai, A and Hashimoto, A (2017) Flood caused by driftwood accumulation at a bridge. International Journal of Disaster Resilience in the Built Environment, 8(05), 466-77.

Kuittinen, M (2016) Does the use of recycled concrete lower the carbon footprint in humanitarian construction?. International Journal of Disaster Resilience in the Built Environment, 7(05), 472-88.

Low, S P, Gao, S and Wong, G Q E (2017) Resilience of hospital facilities in Singapore’s healthcare industry: a pilot study. International Journal of Disaster Resilience in the Built Environment, 8(05), 537-54.

Maal, M and Wilson-North, M (2019) Social media in crisis communication – the “do’s” and “don’ts”. International Journal of Disaster Resilience in the Built Environment, 10(05), 379–91.

Mandal, S, Sarathy, R, Korasiga, V R, Bhattacharya, S and Dastidar, S G (2016) Achieving supply chain resilience: The contribution of logistics and supply chain capabilities. International Journal of Disaster Resilience in the Built Environment, 7(05), 544-62.

Mukhopadhyay, S, Halligan, J and Hastak, M (2016) Assessment of major causes: nuclear power plant disasters since 1950. International Journal of Disaster Resilience in the Built Environment, 7(05), 521-43.

Naja, M K and Baytiyeh, H (2016) Risk assessment of high schools in Lebanon for potential terrorist threat. International Journal of Disaster Resilience in the Built Environment, 7(05), 460-71.

Oloo, J O and Omondi, P (2017) Strengthening local institutions as avenues for climate change resilience. International Journal of Disaster Resilience in the Built Environment, 8(05), 573-88.

Ongkowijoyo, C S, Doloi, H and Mills, A (2019) Participatory-based risk impact propagation and interaction pattern analysis using social network analysis. International Journal of Disaster Resilience in the Built Environment, 10(05), 363–78.

  • Type: Journal Article
  • Keywords: Risk analysis; Two-mode network analysis; Community resilience; Infrastructure system; Network analysis; Risk management; Participatory approaches;
  • ISBN/ISSN: 1759-5908
  • URL: https://doi.org/10.1108/IJDRBE-06-2017-0041
  • Abstract:
    This paper aims to develop a novel risk analysis model that uses both participatory and computerized techniques to capture and model the dynamic of risk impact propagation and interaction pattern. Design/methodology/approach In this research, an integrated model, applying modified participatory method and novel dichotomize procedure in the perspectives of social network topological analysis, is developed. Findings Based on the analysis output, it is found that; (i) the risk propagation is characterized by its dynamic and non-linear impact pattern, and (ii) the risk interaction is distinguished based on the degree of connectedness between various risks. Research limitations/implications This research assumes that the risk impact propagation and interaction pattern within the risk network are static. Further research is required to analyze the risk network in dynamic circumstances. Practical implications This research contributes in delivering practical tools that could potentially provide a further path for developing mitigation strategy and policies that seek to address the complexity of risk phenomena, and thus enhance community resilience. Social implications This research reveals some underlying patterns of how the risk impact propagation and interaction pattern are structured. Thus, it can help decision-makers make formal arrangements of particular urban infrastructure (UI) governance visible toward building risk plan and mitigation strategies. Originality/value This research contributes to filling the risk management knowledge gap. It is suggested that analyzing risk using a network approach is suited to capture the intricate processes that shape the complexity of UI risk structural network. By validating the model, this research shows the applicability and capability of the model to improve both the RA accuracy and decision making effectiveness towards risk mitigation plan and strategy.

Pamungkas, A and Purwitaningsih, S (2019) Green and grey infrastructures approaches in flood reduction. International Journal of Disaster Resilience in the Built Environment, 10(05), 343–62.

Rafi, M M, Lodi, S H, Ahmed, M, Kumar, A and Verjee, F (2016) Development of building inventory for northern Pakistan for seismic risk reduction. International Journal of Disaster Resilience in the Built Environment, 7(05), 501-20.

Rautela, P, Joshi, G C and Ghildiyal, S (2019) Economics of seismic safety for earthquake-prone Himalayan province of Uttarakhand in India. International Journal of Disaster Resilience in the Built Environment, 10(05), 317–42.

Shahin, M, Billah, M, Islam, M M, Parvez, A and Zaman, A M (2020) Cyclone shelters need sustainable development. International Journal of Disaster Resilience in the Built Environment, 11(05), 659–78.

Subedi, J, Ghimire, R M, Neupane, R P and Amatya, S (2016) Cost difference of buildings in Kathmandu constructed with and without earthquake safer features. International Journal of Disaster Resilience in the Built Environment, 7(05), 444-59.

Tasantab, J C, Gajendran, T, von Meding, J and Maund, K (2020) Perceptions and deeply held beliefs about responsibility for flood risk adaptation in Accra Ghana. International Journal of Disaster Resilience in the Built Environment, 11(05), 631–44.