Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 35 results ...

Adekunle, T O (2019) Field measurements of comfort, seasonal performance and cold stress in cross-laminated timber (CLT) school buildings. Smart and Sustainable Built Environment, 9(04), 655–73.

Aggarwal, A, Rani, A and Kumar, M (2019) A robust method to authenticate car license plates using segmentation and ROI based approach. Smart and Sustainable Built Environment, 9(04), 737–47.

Aggarwal, T and Solomon, P (2019) Quantitative analysis of the development of smart cities in India. Smart and Sustainable Built Environment, 9(04), 711–26.

Agyekum, K, Adinyira, E and Ampratwum, G (2020) Factors driving the adoption of green certification of buildings in Ghana. Smart and Sustainable Built Environment, 9(04), 595–613.

de Laat, P (2019) Resource depletion: where is an intervention most effective?. Smart and Sustainable Built Environment, 8(04), 307–21.

Dell'Anna, F, Bottero, M, Becchio, C, Corgnati, S P and Mondini, G (2020) Designing a decision support system to evaluate the environmental and extra-economic performances of a nearly zero-energy building. Smart and Sustainable Built Environment, 9(04), 413–42.

Dewan, S and Singh, L (2020) Use of blockchain in designing smart city. Smart and Sustainable Built Environment, 9(04), 695–709.

du Toit, J and Wagner, C (2020) The effect of housing type on householders' self-reported participation in recycling. Smart and Sustainable Built Environment, 9(04), 395–412.

Ekemode, B G (2019) Impact of urban regeneration on commercial property values in Osogbo, Osun State, Nigeria. Smart and Sustainable Built Environment, 9(04), 557–71.

Eslamirad, N, Malekpour Kolbadinejad, S, Mahdavinejad, M and Mehranrad, M (2020) Thermal comfort prediction by applying supervised machine learning in green sidewalks of Tehran. Smart and Sustainable Built Environment, 9(04), 361–74.

Ghosh, S, Kochhar, K, Sharma, A, Kaushal, S, Agrawal, J, Garg, A, Kumar, A and Dugar, Y (2016) Investigating structure generated turbulence using an unmanned aerial vehicle: A prelude to optimal ventilation strategies in India’s upcoming smart cities. Smart and Sustainable Built Environment, 5(04), 372-92.

Ghosh, S, Kochhar, K, Sharma, A, Kaushal, S, Agrawal, J, Garg, A, Kumar, A and Dugar, Y (2016) Investigating structure generated turbulence using an unmanned aerial vehicle: A prelude to optimal ventilation strategies in India’s upcoming smart cities. Smart and Sustainable Built Environment, 5(04), 372-92.

Hopkins, E A (2016) Barriers to adoption of campus green building policies. Smart and Sustainable Built Environment, 5(04), 340-51.

Hussein, D (2020) A user preference modelling method for the assessment of visual complexity in building façade. Smart and Sustainable Built Environment, 9(04), 483–501.

Khan, N A, Ullah Khan, S, Ahmed, S, Farooqi, I H, Hussain, A, Vambol, S and Vambol, V (2019) Smart ways of hospital wastewater management, regulatory standards and conventional treatment techniques. Smart and Sustainable Built Environment, 9(04), 727–36.

Konstantinou, T, de Jonge, T, Oorschot, L, El Messlaki, S, van Oel, C and Asselbergs, T (2019) The relation of energy efficiency upgrades and cost of living, investigated in two cases of multi-residential buildings in the Netherlands. Smart and Sustainable Built Environment, 9(04), 615–33.

Krueger, K, Stoker, A and Gaustad, G (2019) “Alternative” materials in the green building and construction sector. Smart and Sustainable Built Environment, 8(04), 270–91.

Kumar, A, Jain, S and Yadav, D (2020) A novel simulation-annealing enabled ranking and scaling statistical simulation constrained optimization algorithm for Internet-of-things (IoTs). Smart and Sustainable Built Environment, 9(04), 675–93.

Kumar, V, Hundal, B S and Kaur, K (2019) Factors affecting consumer buying behaviour of solar water pumping system. Smart and Sustainable Built Environment, 8(04), 351–64.

Lau, J L and Hashim, A H (2019) Mediation analysis of the relationship between environmental concern and intention to adopt green concepts. Smart and Sustainable Built Environment, 9(04), 539–56.

Lau, J L, Hashim, A H, Samah, A A and Salim, A S S (2016) Understanding the environmental worldviews of Malaysian project managers. Smart and Sustainable Built Environment, 5(04), 307-24.

Loyola, M (2019) A method for real-time error detection in low-cost environmental sensors data. Smart and Sustainable Built Environment, 8(04), 338–50.

Moshtaghian, F, Golabchi, M and Noorzai, E (2020) A framework to dynamic identification of project risks. Smart and Sustainable Built Environment, 9(04), 375–93.

Ndlangamandla, M G and Combrinck, C (2019) Environmental sustainability of construction practices in informal settlements. Smart and Sustainable Built Environment, 9(04), 523–38.

Opawole, A, Babatunde, S O, Kajimo-Shakantu, K and Ateji, O A (2020) Analysis of barriers to the application of life cycle costing in building projects in developing countries. Smart and Sustainable Built Environment, 9(04), 503–21.

Opoku, D J, Ayarkwa, J and Agyekum, K (2019) Barriers to environmental sustainability of construction projects. Smart and Sustainable Built Environment, 8(04), 292–306.

Prakash, A (2019) Smart Cities Mission in India: some definitions and considerations. Smart and Sustainable Built Environment, 8(04), 322–37.

Rahman, F, Rowlands, I and Weber, O (2017) Do green buildings capture higher market valuations and lower vacancy rates? A Canadian case study of LEED and BOMA-BEST properties. Smart and Sustainable Built Environment, 6(04), 102-15.

  • Type: Journal Article
  • Keywords: Canada; certification; green buildings; market valuations; municipal valuations
  • ISBN/ISSN:
  • URL: https://doi.org/10.1108/SASBE-03-2017-0008
  • Abstract:
    Purpose It is becoming increasingly clear that as the pressures of climate change increase around the world, all nations must strive to lower their carbon footprint through conservation. If the growth trend of green building and infrastructure construction is to be continued and improved upon, then evidence must be collected as to the benefits they bring about, and the level of support they enjoy in the market. The purpose of this paper is to shed light on the economic performance of green buildings by evaluating whether LEED for Homes and BOMA-BEST properties capture higher market valuations and lower vacancy rates. These types of research questions have not been investigated to a great deal in the Canadian context. The primary analysis concerning municipal market valuation of green buildings was conducted using robust ordinary least squares and logistic regression models. Commercial vacancy rates were compared through the use of χ2 tests. Our analysis did not lead to conclusive evidence that there exists a “green” premium in the real estate market with respect to municipal market valuations. The authors argue that this may largely be due to municipal appraisal methods that currently do not incorporate sustainability factors. As such, they may not adequately reflect market tastes and trends. Furthermore, while the vacancy rates of green commercial buildings were, on the whole, lower than their non-green counterparts, the differences were not statistically significant. Given these results, the authors propose a set of research activities that the academic community should pursue. Design/methodology/approach Statistical techniques are utilized test whether green certification (LEED/BOMA-BEST) leads to higher municipal valuation for both commercial and residential green properties, using regression analysis. Furthermore, χ2 tests are conducted to evaluate whether certification leads to lower vacancy rates for commercial properties. Findings In terms of valuation, certification does not exert (on average) a positive role in terms of higher valuations for both commercial and residential properties. However, with respect to vacancy rates, there is a tendency towards lower vacancy rates for green properties, but the relationship is not statistically significant. Research limitations/implications The next set of research needs to gather greater amount of data with respect to how municipal evaluations are performed since the results are counter-intuitive. Greater tracking of the financial performance of green buildings should be conducted and made available for both public and private bodies. Particularly, rental and sale prices of green buildings need to be tracked in an organized manner. Practical implications The valuation techniques utilized by the municipal authorities need revision as green properties are being assessed without appropriate guidance from educational institutions. Furthermore, the limited amount of “green” valuation techniques in existence may not be applied. Originality/value This is the first Canadian-based research looking into the valuation of green certification using rigorous quantitative statistical techniques and original and publicly available data. Furthermore, it holds important lessons for municipal authorities with respect to green building valuation beyond Canada as the limitations of current practice go mostly likely beyond the North American context.

Saadi, A and Belhadef, H (2020) Deep neural networks for Arabic information extraction. Smart and Sustainable Built Environment, 9(04), 467–82.

Sahebzadeh, S, Dalvand, Z, Sadeghfar, M and Heidari, A (2018) Vernacular architecture of Iran’s hot regions; elements and strategies for a comfortable living environment. Smart and Sustainable Built Environment, 9(04), 573–93.

Shooshtarian, S and Ridley, I (2016) Determination of acceptable thermal range in outdoor built environments by various methods. Smart and Sustainable Built Environment, 5(04), 352-71.

Susilo, A, Fitriah, F, Sunaryo, Ayu Rachmawati, E T and Suryo, E A (2020) Analysis of landslide area of Tulung subdistrict, Ponorogo, Indonesia in 2017 using resistivity method. Smart and Sustainable Built Environment, 9(04), 341–60.

Tunji-Olayeni, P, Kajimo-Shakantu, K and Osunrayi, E (2020) Practitioners' experiences with the drivers and practices for implementing sustainable construction in Nigeria: a qualitative assessment. Smart and Sustainable Built Environment, 9(04), 443–65.

van Stijn, A and Gruis, V (2020) Towards a circular built environment. Smart and Sustainable Built Environment, 9(04), 635–53.

Xia, B, Rosly, N, Wu, P, Bridge, A and Pienaar, J (2016) Improving sustainability literacy of future quantity surveyors. Smart and Sustainable Built Environment, 5(04), 325-39.