Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 43 results ...

Ahmed, S and Sobuz, M H R (2019) Challenges of implementing lean construction in the construction industry in Bangladesh. Smart and Sustainable Built Environment, 9(02), 174–207.

  • Type: Journal Article
  • Keywords: Bangladesh; Questionnaire survey; Implementation; Challenges; Lean construction; RII;
  • ISBN/ISSN: 2046-6099
  • URL: https://doi.org/10.1108/SASBE-02-2019-0018
  • Abstract:
    Construction management is ameliorated by the lean construction concept in many direct and indirect ways to reduce waste of construction process and improve the value. The purpose of this paper is to identify the challenges of the implementation of lean construction in the Bangladeshi construction industry and to prioritize these factors that constitute these challenges. Design/methodology/approach A comprehensive literature review was used for shorting the global challenges of implementing lean construction. Subsequently, these challenges were incorporated into a structured questionnaire for survey. A total of 164 valid responses were collected from Bangladeshi construction practitioners involved in different types of construction organizations. The results were analyzed using the Relative Important Index (RII) and Mann–Whitney U test. Findings The findings revealed 41 challenges of lean construction implementation in the Bangladeshi construction industry. The highest ranking challenges are the lack of awareness about lean construction, lack of skills, training and lean techniques, unwillingness to change the existing culture, lack of management commitment, fragmented and cyclic nature of the construction project and unavailing communication between all project participants. The study also discusses some universally applicable solutions to overcome these challenges. Originality/value By the findings of this study, the Bangladeshi construction industry could get a new insight into the challenges of implementing lean construction. It could play a very important part in the body of knowledge, as it reveals the challenges of implementing lean construction for the first time with the socio-economic context of Bangladesh. Exploring the findings, the study could help the stakeholders, companies, academician, researchers and government to focus their effort and resources on the significantly appropriate issues. Furthermore, this study may beneficial to those developing countries especially in South Asia, who have shared the same socio-economic status with Bangladesh.

Bansal, S, Biswas, S and Singh, S (2018) Fuzzy TOPSIS based holistic assessment of regions: context of India. Smart and Sustainable Built Environment, 7(02), 166–81.

Behm, M and Hock, P C (2012) Safe design of skyrise greenery in Singapore. Smart and Sustainable Built Environment, 1(02), 186-205.

Bensalah, M, Elouadi, A and Mharzi, H (2019) Overview: the opportunity of BIM in railway. Smart and Sustainable Built Environment, 8(02), 103–16.

Bu, S, Shen, G, Anumba, C J, Wong, A K D and Liang, X (2015) Literature review of green retrofit design for commercial buildings with BIM implication. Smart and Sustainable Built Environment, 4(02), 188-214.

Buckman, A H, Mayfield, M and Beck, S B M (2014) What is a Smart Building?. Smart and Sustainable Built Environment, 3(02), 92-109.

Capitanio, M (2018) More green space in Japanese shopping streets. Smart and Sustainable Built Environment, 7(02), 212–22.

Chan, A P C, Wong, F K W and Yang, Y (2016) From innovation to application of personal cooling vest. Smart and Sustainable Built Environment, 5(02), 111-24.

Clarke, N J, Kuipers, M C and Roos, J (2019) Cultural resilience and the Smart and Sustainable City. Smart and Sustainable Built Environment, 9(02), 144–55.

Dar, J (2019) Solar splitting day-lighting system “SolsDays”: the first beam splitting day-lighting system. Smart and Sustainable Built Environment, 9(02), 130–43.

de Casas Castro Marins, K R (2014) A method for energy efficiency assessment during urban energy planning. Smart and Sustainable Built Environment, 3(02), 132-52.

Dhar, T K, Hossain, M S M and Rahaman, K R (2013) How does flexible design promote resource efficiency for housing? A study of Khulna, Bangladesh. Smart and Sustainable Built Environment, 2(02), 140-57.

Foliente, G and Seo, S (2012) Modelling building stock energy use and carbon emission scenarios. Smart and Sustainable Built Environment, 1(02), 118-38.

Fouchal, F, Ellis, K, Hassan, T and Firth, S (2013) ICT-enabled energy efficiency – a lens onto practices of other sectors. Smart and Sustainable Built Environment, 2(02), 158-78.

García-León, R A, Quintero-Quintero, W and Rodriguez-Castilla, M (2019) Thermal analysis of three motorcycle disc brakes. Smart and Sustainable Built Environment, 9(02), 208–26.

Guo, S, Shen, G, Yang, J, Sun, B and Xue, F (2015) Embodied energy of service trading in Hong Kong. Smart and Sustainable Built Environment, 4(02), 234-48.

Hammad, A, Akbarnezhad, A, Grzybowska, H, Wu, P and Wang, X (2019) Mathematical optimisation of location and design of windows by considering energy performance, lighting and privacy of buildings. Smart and Sustainable Built Environment, 8(02), 117–37.

Hardie, M, Allen, J and Newell, G (2013) Environmentally driven technical innovation by Australian construction SMEs. Smart and Sustainable Built Environment, 2(02), 179-91.

Hayles, C S, Dean, M, Lappin, S A and McCullough, J E (2013) Climate change adaptation: A decision support framework to encourage environmentally responsible behaviour. Smart and Sustainable Built Environment, 2(02), 192-214.

Javed, N, Thaheem, M J, Bakhtawar, B, Nasir, A R, Khan, K I A and Gabriel, H F (2019) Managing risk in green building projects: toward a dedicated framework. Smart and Sustainable Built Environment, 9(02), 156–73.

Jukic, D and Carmichael, D G (2016) Emission and cost effects of training for construction equipment operators: A field study. Smart and Sustainable Built Environment, 5(02), 96-110.

Kaboli, A S and Carmichael, D G (2014) Truck dispatching and minimum emissions earthmoving. Smart and Sustainable Built Environment, 3(02), 170-86.

Kasai, S, Li, N and Fang, D (2015) A system-of-systems approach to understanding urbanization – state of the art and prospect. Smart and Sustainable Built Environment, 4(02), 154-71.

Kayan, B A, Forster, A M and Banfill, P F G (2016) Green Maintenance for historic masonry buildings: an option appraisal approach. Smart and Sustainable Built Environment, 5(02), 143-64.

Komolafe, M O, Oyewole, M O and Gbadegesin, J T (2019) Stakeholders’ relevance in sustainable residential property development. Smart and Sustainable Built Environment, 9(02), 112–29.

Lundgren, M S (2016) Energy and architectural consequences of Swedish building code. Smart and Sustainable Built Environment, 5(02), 125-42.

Manda Putra, R, Muhammad Tang, U, Ikhwan Siregar, Y and Thamrin (2018) Sustainability analysis of the management of Lake Baru in Buluh Cina Village, Indonesia. Smart and Sustainable Built Environment, 7(02), 182–211.

Meistad, T (2014) How energy efficient office buildings challenge and contribute to usability. Smart and Sustainable Built Environment, 3(02), 110-31.

Newman, P W (2015) Transport infrastructure and sustainability: a new planning and assessment framework. Smart and Sustainable Built Environment, 4(02), 140-53.

Olanipekun, A O, Oshodi, O S, Darko, A and Omotayo, T (2019) The state of corporate social responsibility practice in the construction sector. Smart and Sustainable Built Environment, 9(02), 91–111.

Pathania, A K, Goyal, B and Saini, J R (2017) Diffusion of adoption of solar energy – a structural model analysis. Smart and Sustainable Built Environment, 6(02), 66-83.

Randeree, K and Ahmed, N (2019) The social imperative in sustainable urban development. Smart and Sustainable Built Environment, 8(02), 138–49.

Reeve, A C, Desha, C, Hargreaves, D and Hargroves, K (2015) Biophilic urbanism: contributions to holistic urban greening for urban renewal. Smart and Sustainable Built Environment, 4(02), 215-33.

Ren, Z, Chrysostomou, V and Price, T (2012) The measurement of carbon performance of construction activities: A case study of a hotel construction project in South Wales. Smart and Sustainable Built Environment, 1(02), 153-71.

Sajjadian, S M (2016) Dynamic modelling of solar storage system: a case study of leisure centre. Smart and Sustainable Built Environment, 5(02), 165-75.

Sanchez, A, X, Lehtiranta, L, Hampson, K D and Kenley, R (2014) Evaluation framework for green procurement in road construction. Smart and Sustainable Built Environment, 3(02), 153-69.

Siew, R Y J, Balatbat, M C A and Carmichael, D G (2013) A review of building/infrastructure sustainability reporting tools (SRTs). Smart and Sustainable Built Environment, 2(02), 106-39.

Smits, M W M (2019) A quasi-experimental method for testing rural design support within a DRM framework. Smart and Sustainable Built Environment, 8(02), 150–87.

Suresh, N, Kumar, M and Arul Daniel, S (2019) Multi-agent strategy for low voltage DC supply for a smart home. Smart and Sustainable Built Environment, 9(02), 73–90.

Tazilan, A (2012) Identifying microarchitecture for sustainable design in Malaysia. Smart and Sustainable Built Environment, 1(02), 172-85.

van den Bosch, C C K (2016) Tree agency and urban forest governance. Smart and Sustainable Built Environment, 5(02), 176-88.

Yildirim, K, Hidayetoglu, M L and Sen, A (2012) Effects on sustainability of various skylight systems in buildings with an atrium. Smart and Sustainable Built Environment, 1(02), 139-52.

Zheng, W, Shen, G, Wang, H and Lombardi, P (2015) Critical issues in spatial distribution of public housing estates and their implications on urban renewal in Hong Kong. Smart and Sustainable Built Environment, 4(02), 172-87.