

Christodoulou, S (2005) Construction scheduling with artificial agents and the ant colony optimization
metaheuristic. In: Khosrowshahi, F (Ed.), 21st Annual ARCOM Conference, 7-9 September 2005,
SOAS, University of London. Association of Researchers in Construction Management, Vol. 2, 773-82.

CONSTRUCTION SCHEDULING WITH ARTIFICIAL
AGENTS AND THE ANT COLONY OPTIMIZATION
METAHEURISTIC

Symeon Christodoulou1

1Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678

Nicosia, Cyprus

The research outlined in this paper aims the development of a methodology to arrive
at critical path calculations in construction networks using Ant Colony Optimization
(ACO) algorithms. Ant Colony Optimization is a population-based, artificial multi-
agent, general-search technique for the solution of difficult combinatorial problems.
The method’s theoretical roots are based on the behaviour of real ant colonies and the
collective trail-laying and trail-following of its members in searching for optimal
solutions in traversing multiple paths. In essence, ACO is inspired by the foraging
behaviour of natural ant colonies which optimize their path from an origin (ant nest)
to a destination (food source) by taking advantage of knowledge acquired by other
ants that previously traversed the possible paths. In computer implementations of the
ACO algorithms, artificial ants are both agents and solution-construction procedures
that stochastically build solutions by considering (1) artificial pheromone trails which
change dynamically at run time to reflect the agents’ acquired search experience, and
(2) heuristic information on the problem/network being solved. The paper outlines the
fundamental mathematical background of the ACO method and a suggested possible
implementation strategy for solving for longest (critical) paths in construction
schedule networks.

Keywords: ant colony optimization, construction scheduling, critical path.

INTRODUCTION
Currently, the most widely used method for construction scheduling is the critical path
method (CPM) which, in essence, is based on forward and backward passes of the
activity network to arrive at longest path and total duration calculations. The method
provides planners and constructors with a formalized way of calculating the earliest
and latest dates each construction activity can start and finish at, subject to the
envisioned network topology (activity relationships) and the imposed time, resource
and logic constraints.

Undoubtedly, over the years CPM has grown in functionality, accessibility and
acceptability. Yet, some limitations of the method have recently given rise to the
search for complimentary methodologies that could address some of either the
perceived limitations or the desired additional features.

Among the most notable limitations are: (i) the inability of CPM-based tools to
calculate longest (or shortest) paths from a node to any node, (ii) the inability of CPM-
based tools to account for resource-driven activity relationships (“AND”/”OR”
combinations of resources), and (iii) the computational inefficiency of the critical path
method.

1 schristo@ucy.ac.cy

Christodoulou

 774

Item (i) refers to the need to identify the longest (or shortest) path to a desired activity
from any other activity in a project network. This feature would enable constructors
identify the paths to start (or completion) of any desired activity from any other
activity in the network and act accordingly to recover or accelerate the project and to
redirect resources in the most efficient manner. Similarly, this added feature would
enable planners and managers interested at successful timely completion of specific
activities identify the longest, or shortest, path to that activity and mediate associated
risks as needed.

Item (ii) refers to the need to account for resource-based activity relationships. In this
scenario, tasks are performed and schedule advancement is made upon additive or
conditional combinations of resources. Even though CPM schedules can nowadays be
“resource-loaded”, so that resources are accounted for during the network calculation
phase, such schedules do not enable accounting for real-life situations where activity
sequencing is based on resource (rather than activity) relationships. In other words,
how can a planner account for the situation where an activity can start only when a
resource from a predecessor activity is freed and then combined with a resource from
another predecessor activity to enable the start of the successor activity without
completion of the two predecessor activities?

Item (iii) refers to the perceived computational inefficiency of the traditional CPM
algorithms. If one considers that solution of the activity network can be achieved by
solving the underlying equations which represent the activity interrelationships, then
possible solution methodologies could include solution of linear equations, linear
programming, and forward/backward passes. The first two approaches imply that the
applied solver is capable of handling a large number of equations and constraints, as
well as optimization. Despite that scheduling problems within certain categories in
general have polynomial-type exact solution algorithms and their solution is simple, in
its most general form, though, resource-constrained scheduling problems are “NP-
hard”, meaning that there are no known algorithms for finding optimal solutions in
polynomial time. This class of problems (NP-class) requires computational power that
increases exponentially with the size of the problem and has no exact solution. In such
cases a heuristic approach is warranted. The last approach implies exhaustive
enumeration of the possible paths in a project network, and calculation through
network-traversing. In essence, calculation in this case is achieved by starting from the
first activity and exhaustively identifying all possible paths (successive activities) until
reaching the last activity, adding the duration of each link to the total duration of the
identified path up to that point (EarlyStart, EarlyFinish dates) and then identifying the
longest path (forward pass). A reverse pass (same exhaustive approach) is used to
calculate the latest dates each activity can start and finish subject to keeping the
project end date fixed (as calculated during the forward pass phase). The combination
of the two network passes provides the TotalFloat of each activity (LateStart –
EarlyStart, or LateFinish – EarlyFinish) and therefore the critical path (critical are the
activities with TotalFloat = 0). In summary, despite the methods’ relative ease of
application they possess inefficiencies (i.e. the exhaustive enumeration of network
paths) and computational constraints (i.e. the maximum number of equations and
inequalities the applied solver can solve).

Construction Scheduling with Artificial Agents and the ACO Metaheuristic

 775

ANT COLONY OPTIMIZATION

Introduction
Ant Colony Optimization (ACO) is a population-based general search technique
inspired by the foraging behaviour exhibited by real ant colonies. The method was
first proposed by Dorigo (1991, 1992) for the solution of difficult combinatorial
problems, and further expanded upon by several other researchers (Dorigo et al. 1996,
Maniezzo et al. 2004). The method is characterized by “the combination of a priori
information about the structure of a promising solution with posterior information
about the structure of a previously obtained good solution” (Maniezzo et al. 2004), an
attribute that is very suitable to network traversing and thus construction scheduling.
In essence, the method uses knowledge acquired by one artificial agent during its
path-searching, when constructing the next feasible or optimal solution of a given
path-traversing problem.

The underlying methodology is modelled after the behaviour exhibited by real-life ant
colonies as they search for optimal solutions in node-to-node path traversing
situations, during which a shortest path in a static or dynamic topology is sought. The
behaviour exhibited by such ants is characterized by a reinforcement mechanism that
helps steer succeeding ants to the most frequently previously traversed path. In
particular, an ant randomly traversing possible paths can help find the shortest path
between food sources and a nest and in doing so deposit a chemical substance called
“pheromone”, forming “pheromone trails” which can then be followed by other ants
in the colony. When choosing their way through the possible path routes, ants smell
the deposited pheromone and tend to follow those paths marked by stronger
pheromone concentrations. Therefore, while an isolated ant moves essentially at
random, an ant encountering a previously traversed path and pheromone-laid trail can
detect such, decide with high probability to follow it and subsequently reinforce the
trail with its own pheromone.

The collective behaviour is therefore characterized by a positive (reinforcing)
feedback loop where the probability with which each ant chooses the path to follow
increases with the number of ants having chosen the same path in the preceding steps.
The pheromone trail is reinforced with each successive pass until the ant population
and path traversing converge to the shortest path between source and destination, and
the final result is the relatively quick convergence of the path-traversing to the shortest
path.

Theoretical Framework of the ACO Metaheuristic
A number of ACO algorithms, starting from the original work by Dorigo (1991,
1992), have been developed and proposed over the years. The common framework for
ACO applications was proposed posteriori to be the ACO metaheuristic (Dorigo,
Maniezzo and Colorni 1999), with artificial ants seen as stochastic solution procedures
and acting as agents. The solution construction is biased by the pheromone trails
which change at run-time, the heuristic information on the problem instance and the
ants’ private memory.

The generic problem topology was outlined by Stützle and Dorigo (2002). It consists
(a) of a finite set of components, C, (b) a set of problem states, x, defined in terms of
sequences (relationships) over the elements of C, (c) a set of all possible sequences,
denoted by X, and (d) a finite set of constraints in the system, Ω, which defines the
feasible states and the set of feasible solutions, S*, which are a subset of the feasible

Christodoulou

 776

states. Furthermore, a cost function ()tsf , can be associated with each candidate
solution, s, and in some cases a separate cost function is defined and associated to
states other than solutions.

The generic behavior of the artificial ants was also outlined by Stützle and Dorigo
(2002) as follows:

• Ants build solutions by moving on the construction graph G=(C, R), where C
is the set of components in the network, and R is the set of relationships
(connections) fully connecting the components. Even though both feasible and
infeasible solutions can be built, artificial ants, in general, try to build feasible
solutions. The problem constraints, Ω, are implemented during the network-
traversing and the policy followed by the artificial ants.

• The components, ci ⊆ C, and connections, rij ⊆ R, can have a pheromone trail,
τ, associated with them which allows for the implementation of a long-term
memory policy about the ant search process. Similarly, the components, ci ⊆
C, and connections, rij ⊆ R, can have a heuristic value, η, which allows
incorporation of problem-specific information.

• The path that each artificial ant, k, follows can be stored in the ant’s memory
Mk.

• Each artificial ant, k , can be assigned a start state, ,k
sx and one or more

termination conditions, ke . The construction procedure of ant k stops when at
least one of the termination conditions ke is satisfied.

• When in state ()ixx rr ,1−= an ant attempts to move to any node j in the
feasible solutions subset (immediate successors) k

iN . If this is not possible, it
might be allowed to move to any other node that it is not part of the
immediate-successors subset.

• The move to a successor node is determined by a stochastic decision rule and it
is subject to a function of the locally pheromone and the connection’s
heuristic, the ant’s memory, and the problem constraints.

• Each addition of a component jc to the current solution updates the pheromone
trail associated with it.

Once a solution is built, the ant retraces the same path backwards and updates the
pheromone trails of the used components or connections.

CONSTRUCTION SCHEDULING USING ANT COLONY
OPTIMIZATION

Introduction
Construction scheduling exhibits many similarities to the ACO metaheuristic, since
the underlying network topologies and path-searching approach to longest (or
shortest) path calculations are comparable. If one substitutes the search for shortest
path (ACO) to the search for longest path (CPM) and treats ACO ants, states,
connections and cost function to CPM’s resources, activities, relationships and
durations respectively then the ACO metaheuristic can be employed in solving for the
longest path in connected, acyclic graphs (such as construction activity networks).

Construction Scheduling with Artificial Agents and the ACO Metaheuristic

 777

Furthermore, by considering different nodal states and ant types then the search for
longest path can be accompanied with calculations of longest path from a node to any
node, as well as with resource optimization.

ACO-Based Algorithm
For a given construction network topology (project schedule) defined by a graph
G=(N,A) with N being the set of nodes (activities) and A being the set of arcs (activity
relationships) connecting the subject nodes, the proposed ACO-based procedure for
finding the critical path(s) between chosen nodes 1N and 2N can be summarized by
the following steps:

1. Initialize all arcs with small amount of pheromone, 0τ . This value can be an
inverse line-distance between the nodes 1N and 2N , or the inverse line-distance of
the subject arc.

2. An artificial ant is launched from node 1N (the start node) pseudo-randomly
walking from a node to a successor node via the connecting arcs until it reaches
either the end-node (2N) or a dead end. When at a given node, the artificial ant’s
selection of an arc to follow is probabilistic, based on a stochastic assignment of
each thi arc’s likelihood of selection, as defined by

∑
=

i
ii

ii
ip β

β

ητ
ητ

 (1)

In the above equation, iτ is the pheromone concentration on the thi arc, iη is an a
priori available heuristic value for the thi arc and iβ is a parameter determining the
relative influence of the heuristic information. The value of iη can be defined
either as the inverse of the length of the arc, or the inverse of the length of the arc
plus the line-distance between the subject node and 2N . It should be noted that
previously visited arcs are excluded from the selection (to enable complete “tree
spanning” and avoid “memorization”).

3. The selection is further assisted by the consideration of a randomly generated
number, 10 ≤≤ q , which is compared to a predefined value, 0q , specific to the
network topology. If 0qq ≤ then the arc with the highest value ip is selected.
Otherwise, a random selection of an arc is used based on the distribution defined
by the equation for ip .

4. Upon crossing each thi arc during the aforementioned solution-constructing phase
a local pheromone update rule is applied to update the level of pheromone
concentration at the given arc. The updated pheromone level is defined by

() 01 ρττρτ +−= ii (2)

where ρ is another network topology parameter (10 ≤≤ ρ). As already noted, the
goal of the local updating is to enable exploration of more path/route variations by
making already traversed arcs less likely to be chosen again during the
randomization of the arc selection process.

Christodoulou

 778

5. Steps (2) - (4) are repeated for all ants in the ant colony and the most successful
ant (i.e. the one whose path defines the solution) is used to globally update the
network’s pheromone trails. The global update rule is defined by

() Lii αττατ +−= 1 (3)

whereα is yet another network topology parameter (10 ≤≤α) whose value
determines the level of evaporation of pheromone concentrations. The factor Lτ is
a value inversely proportional to the path length of the best solution in case of an
arc visited by the best ant or zero for all other ants.

6. The global update rule can be applied by either the “global-best” or the “iteration-
best” ant. In the first case, the ant to perform the update is the one that obtained
the best solution (found the longest path in the network) during the entire
optimization process. In the second case the update is performed by the ant
reaching the best solution during each iteration of the algorithm.

7. Steps (2) - (6) are repeated for either a fixed number of iterations or until a
predefined condition is met, and upon termination of the algorithm the pheromone
trail in the graph G=(N,A) is used to determine the solution (the arcs with highest
pheromone concentration form the longest path of the network).

Case Study
The ACO algorithm was implemented by means of custom software (Christodoulou
2005). The software was designed and developed so as to be able not only to emulate
traditional (legacy) construction scheduling applications and integrate with their
underlying databases but to also be able to complement them with the ACO
metaheuristic features. Furthermore, the developed software application can be
executed in either “test mode” (randomized network topologies) or “project mode”
(actual construction schedules to be solved) and be integrated with external database
management systems to account for additional common construction features such as
activity costs, resource types, etc. The ability to integrate with legacy scheduling
software (such as Primavera’s Primavera Project Planner, or Microsoft’s Project),
furnishes users with the ability to get the most out of CPM and ACO applications.

Figure 1: Topology of case study project network

Construction Scheduling with Artificial Agents and the ACO Metaheuristic

 779

The developed software was tested on several case studies, one of which is presented
herein. The case study presented (Figure 1) is based on a randomized topology of 10
nodes, 18 node connections (a duplicate connection generated by the program was
subsequently ignored), and assumed topology parameters of 5.00 =q , 0.1=β ,

5.0=ρ , 5.0=α , and 50=C . Of the 10 network nodes included in the assumed
network topology, 4 are “ant nests” (i.e. nodes with no predecessor nodes), 5 are
regular nodes and 1 is a “food source” (i.e. a node with no successor nodes).

It is also noted that the generated network was based on unidirectional nodal
connections (an acyclic graph) so as to emulate real-life construction networks, and
that the network construction was based on an assumed maximum number of three
successor connections per node, to simplify the manual calculations and subsequent
verification by standard CPM procedures.

The critical path calculations on the case study topology, and the resulting EarlyStart,
EarlyFinish, LateStart, LateFinish and TotalFloat values obtained by applying
traditional CPM procedures are tabulated in Table 1. As shown, the CPM calculations
result in identifying activities “0-4”, “4-6”, “6-7” and “7-9” as critical (TotalFloat =
0), thus indicating a total project duration of 52+19+25+14 = 110 time-units.

Table 1: Solution of the case-study network topology using the Critical Path Method (CPM)

Start
Node

End
Node Duration Successor

Nodes
Early
Start

Early
Finish

Late
Start

Late
Finish

Total
Float

Critical
?

0 4 52 6, 8 0 52 0 52 0 Yes
0 7 51 9 0 51 45 96 45 -
0 6 56 7, 8 0 56 15 71 15 -
1 4 23 6, 8 0 23 29 52 29 -
1 9 68 - 0 68 42 110 42 -
1 6 40 7, 8 0 40 31 71 31 -
2 5 24 7, 9 0 24 46 70 46 -
3 7 25 9 0 25 71 96 71 -
3 4 29 6, 8 0 29 23 52 23 -
3 9 40 - 0 40 70 110 70 -
4 6 19 7, 8 52 71 52 71 0 Yes
4 8 31 9 52 83 55 86 3 -
5 9 38 - 24 62 72 110 48 -
5 7 26 9 24 50 70 96 26 -
6 7 25 9 71 96 71 96 0 Yes
6 8 12 9 71 83 74 86 3 -
7 9 14 - 96 110 96 110 0 Yes
8 9 24 - 83 107 86 110 3 -

Application of the ACO methodology generates different topology states at the end of
each iteration (as shown in Figure 2). Since the method is “intelligently” iterative
(each successive iteration is selectively dependant on previously acquired knowledge
about the topology) the critical path may change several times before converging and
stabilizing to the correct solution (Figure 2). At each iteration, though, the algorithm
generates the pheromone concentration levels (acquired knowledge on the criticality
of each connection and node) and the resulting longest path (thus the critical
activities).

Christodoulou

 780

Figure 2: Network states at different ACO iterations

The final (solution) results obtained by the ACO algorithm are shown in Figure 3,
tabulated as FinalPheromone values. The algorithm considers these values during the
solution phase and decides which activities on a continuous path are critical, also
outputting the “Critical Path (Nodes)”, “Critical Path (Connections)” and “Duration”
values (Figure 2). As seen, for the particular case study, the ACO algorithm identifies

Construction Scheduling with Artificial Agents and the ACO Metaheuristic

 781

activities “0-4”, “4-6”, “6-7” and “7-9” (connections 1, 12, 16 and 18 respectively) as
critical and calculates the critical path to be of 110 time-units total duration, which
agrees with the results given by traditional CPM-based software.

Figure 3: Solution of sample network using the ACO algorithm

Variations and Extensions of Applied Method
Even though this paper presents longest-path calculations in construction networks
and identification of longest path activities and project total duration, the applied ACO
methodology can be modified and extended to account for resource and cash flows,
and node-to-node longest path calculations. The former can be achieved by
considering the respective activity assignments and including them in the cost
function of each arc, used in the optimization process. The latter can be achieved by
setting the start node of the node-to-node sequence of interest as “ant nest” and the
end node as “food source” and reconstructing the solution path (longest path) while all
other nodes are set as plain network nodes.

CONCLUSIONS AND FUTURE WORK
The ACO metaheuristic provides users with an alternative way of constructing
longest-path solutions in acyclic (unidirectional) network topologies. Despite the
seemingly iterative approach of the ACO method, the method utilizes intelligent
selection procedures to perform the optimization and arrive at the longest paths in a
prescribed network topology. Past sample case studies indicate quick convergence to
the final solution and thus low computational time, and the performance of the applied
optimization model can be further increased by varying the topology parameters.

Christodoulou

 782

Ongoing work on the subject matter addresses the inclusion of resource-based
scheduling techniques to account for AND/OR resource-combination requirements at
the network nodes, and ways to generate total-float values for each activity (the
current ACO method does not generate these values).

REFERENCES
Christodoulou, S. (2005) Ant Colony Optimization in Construction Scheduling. In: ASCE’s

2005 International Conference On Computing in Civil Engineering, 12-15 July 2005,
Cancun, Mexico. American Society of Civil Engineers (ASCE).

Dorigo, M. (1991) Ant Colony Optimization. In: G. C. Onwubolu and B. V. Babu (eds.) New
Optimization Techniques in Engineering. Springer-Verlag Berlin Heidelberg, 101-
117.

Dorigo, M. (1992) Optimization, Learning and Natural Algorithms, Ph.D.Thesis, Politecnico
di Milano, Italy.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996) The Ant System: Optimization by a Colony
of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics Part B,
26(2), 29-41.

Dorigo, M., Di Caro, G. and Gambardella, L. M. (1999) Ant Algorithms for Discrete
Optimization. Artificial Life, 5(2), 137-172.

Maniezzo V, Gambardella L.M., De Luigi F. (2004). In: G. C. Onwubolu and B. V. Babu
(eds.) New Optimization Techniques in Engineering. Springer-Verlag Berlin
Heidelberg, 101-117.

Stützle, T. and Dorigo, M. (2002). The Ant Colony Optimization Metaheuristic: Algorithms,
Applications, and Advances. In: F. Glover and G. Kochenberger (eds.) Handbook of
Metaheuristics. Kluwer Academic Publishers, Norwell, MA.

